
Chapter 5

Hardy Spaces.

5.1 Stationary Gaussian Processes.

Consider a collection{Xj : −∞ < j < ∞} of random variables such that the
joint distribution of any finite collection is a multivariate Gaussian distribu-
tion with mean 0 and covariance E[XiXj] = ρ(i− j). The sequence ρ(n) is a
positive definite sequence and by a theorem of Bochner it has representations
as

ρ(n) =

∫ 2π

0

ei n θµ(dθ)

where µ is a nonnegative measure, on the boundary C of the unit disc D.
It is referred to as the spectral measure. If P refers to the measure on the
space Ω of sequences ω = {xj} of such a Gaussian process, it is invariant
with respect to the shift xi → xi+1 and for any finite set of complex numbers
{aj}

EP [|
∑

ajXj|2] =
∑

j,k

ρ(j − k)aj āk =

∫ 2π

0

|
∑

aje
i j θ|2µ(dθ) (5.1)

We have the Hilbert space H which is the span of {Xj} in L2(P ) and sub-
spaces Hn that are spanned by {Xj : j ≤ n} and H = ∪nHn. H−∞ = ∩nHn.

The following are natural questions.

1. Is H−∞ = {0}?

2. Is H∞ = H−∞ or equivalently is Hn = Hn+1?
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3. What is the projection X̂n+1 of Xn+1 on Hn? What is the prediction
error σ2 = EP [|Xn+1 − X̂n+1|2]?

From equation 5.1 we can rephrase the questions in terms of the spectral
measure µ and the spans Hn of the trigonometric polynomials {ei j θ : j ≤ n}.
We look at the Hilbert space L2(C, µ) and the span Hn of {ei j,θ : j ≤ n} and
the questions are easily translated to this context. The fact that the distri-
butions are Gaussian plays an important role and allows to limit ourselves
to linear combinations of the random variables.

5.2 Hardy Spaces.

For 0 < p < ∞, the Hardy Space Hp in the unit disc D with boundary
S = ∂D consists of functions u(z) that are analytic in the disc {z : |z| < 1},
that satisfy (with z = reiθ),

sup
0≤r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ < ∞ (5.2)

Lemma 5.1. We have the Poisson representation formula that is valid for
1 ≥ r′ > r ≥ 0

u(rei θ) =
r′2 − r2

2π

∫ 2π

0

u(r′ei (θ−ϕ))

r′2 − 2rr′ cosϕ+ r2
dϕ (5.3)

The quantity M(r) =
∫ 2π
0 |u(rei θ)|pdθ. is nondecreasing in r.

Proof. The real and imaginary parts of u(z) are hamonic functions and the
Poisson formula is valid. The monotonicity is obvious for p = 1 because for
r′ > r,

|u(rei θ)| ≤ r′2 − r2

2π

∫ 2π

0

|u(r′ei (θ−ϕ)|)
r′2 − 2rr′ cosϕ+ r2

dϕ

and for p > 1 it is an application of Hölder’s inequality. Actually

M(r) =

∫ 2π

0

|u(rei θ)|pdθ

is monotonic in r for p > 0. To see this we note that g(rei θ) = log |u(rei θ)|
is subharmonic and therefore, using Jensen’s inequality,
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r′2 − r2

2π

∫ 2π

0

exp[pg(r′ei (θ−ϕ))]

r′2 − 2rr′ cosϕ+ r2
dϕ

≥ exp[p
r′2 − r2

2π

∫ 2π

0

g(r′ei (θ−ϕ))

r′2 − 2rr′ cosϕ+ r2
dϕ]

≥ exp[pg(rei θ)]

Integrating both sides with respect to θ we obtain the inequality.

Theorem 5.2. If 1 < p < ∞ and u(x, y) is a Harmonic function in D,
satisfying a bound of the form

sup
0<r<1

∫ 2π

0

|u(rei θ)|pdθ ≤ C

then limr→1 u(reiθ) = f(θ) exists in Lp and we obtain the representation

u(rei θ) =
1− r2

2π

∫ 2π

0

f(ei (θ−ϕ))

1− 2r cosϕ+ r2
dϕ

in terms of the boundary function f on S.

Proof. We can get a weak radial limit f (along a subsequence if necessary)
of u(r′ei θ) as r′ → 1. In (5.2) we can let r′ → 1 keeping r and θ fixed. The
Poisson kernel converges strongly in Lq to

1

2π

1− r2

1− 2r cosϕ+ r2

and we get the representation (5.2) for u(rei θ) (with r′ = 1) in terms of the
boundary function f on S.

Now it is clear that actually

lim
r→1

u(rei θ) = f(θ)

in Lp. Since we can consider the real and imaginary parts separately, these
considerations apply to Hardy functions in Hp as well.
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The Poisson kernel is harmonic as a function of (r, θ). It is the real part
of the function 1

2π
1+z
1−z

. It is easily seen that

∞∑

n=−∞

r|n|ei n θ =
1

1− z
+

1

1− z̄
− 1 =

1− r2

1− 2r cos θ + r2
= R.P.

[
1 + z

1− z

]

and its harmonic conjugate, normalized so that u(0) = 0 is given by

I.P.

[
1 + z

1− z

]
=

∞∑

n=−∞

r|n|ei n θσ(n)

where σ(n) = ±1 or 0 depending on whether n is positive, negative or 0. It is
clear that any function in the Hardy Spaces is essentially determined by the
boundary value of its real (or imaginary part) on S. The conjugate part is
then determined through the Hilbert transform and to be in the Hardy class
Hp, both the real and imaginary parts should be in Lp(R). For p > 1, since
the Hilbert transform is bounded on Lp, this is essentially just the condition
that the real part be in Lp. However, for p ≤ 1, to be in Hp both the real
and imaginary parts should be in Lp, which is stronger than just requiring
that the real part be in Lp.

5.3 Inner and outer functions.

We now prove a factorization theorem for functions u(z) ∈ Hp for p in the
range 0 < p < ∞.

A function analytic in the disc D is called an inner function if it is bounded
by 1 and its boundary value f on S that exists as a radial limit in every Lp,
is of modulus 1, i.e |f | = 1 a.e. on S.

A function analytic in the disc D which is in H1 is called an outer function
if

log |u(rei θ)| = 1− r2

2π

∫
log |ueiφ|

1− 2r cos(θ − φ) + r2
dφ

Theorem 5.3. Let u(z) ∈ Hp for some p ∈ (0,∞). Then there exists a
factorization u(z) = v(z)F (z) of u into two analytic functions v and F on
D with the following properties. |F (z)| ≤ 1 in D and the boundary value
F ∗(ei θ) = limr→1 F (rei θ) that exists in every Lp(S) satisfies |F ∗| = 1 a.e. on
S. Moreover F contains all the zeros of u so that v is zero free in D.
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Proof. Suppose u has a zero at the origin of order k and no other zeros. Then
we take F (z) = zk and we are done. In any case, we can remove the zero, if
any, at 0 and are therefore free to assume that u(z) ≠ 0. Suppose u has a
finite number of zeros, z1, . . . , zn. For each zero zj consider fzj (z) =

z−zj
1−zz̄j

. A

simple calculation yields |z−zj | = |1−zz̄j | for |z| = 1. Therefore |fzj (z)| = 1
on S and |fzj(z)| < 1 in D. We can write u(z) = v(z)Πn

i=1fzj (z). Clearly the
factorization u = Fv works with F (z) = Πfzi(z). If u(z) is analytic in D, we
can have a countable number of zeros accumulating near S. We want to use
the fact that u ∈ Hp for some p > 0 to control the infinite product Π∞

i=1fzi(z),
that we may now have to deal with. Since log |u(z)| is subharmonic and we
can assume that u(0) ≠ 0

−∞ < c = log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ

for r < 1. If we take a finite number of zeros z1, . . . , zk and factor u(z) =
Fk(z)vk(z) where Fk(z) = Πk

1fzi(z) is continuous on D ∪ S and |Fk(z)| = 1
on S, we get

log |vk(0)| ≤ lim sup
r→1

1

2π

∫ 2π

0

log |vk(rei θ)|dθ

= lim sup
r→1

1

2π

∫ 2π

0

log |u(rei θ)|dθ

≤ sup
0<r<1

1

2π

∫ 2π

0

log |u(rei θ)|dθ

≤ C

uniformly in k. Since

log |vk(0)| = log |u(0)|− log |Fk(0)| = log |u(0)|−
k∑

j=1

log |zj|

−
k∑

j=1

log |zj | ≤ − log |u(0)|+ C

Denoting C − c by C1,
∑

(1− |zj |) ≤
∑

− log |zj | ≤ C1
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One sees from this that actually the infinite product F (z) = Πjfzj (z)e
−i aj

converges with proper phase factors aj . We write −zj = |zj |e−i aj . Then

1− fzi(z)e
−i aj = 1 +

z − zj
1− zz̄j

|zj |
zj

=
zj − z|zj |2 + z|zj |− zj |zj|

zj(1− zz̄j)

=
(1− |zj|)(zj + z|zj |)

zj(1− zz̄j)

Therefore |1−fzj (z)e
−i aj | ≤ C(1−|zj |)(1−|z|)−1 and if we redefine Fn(z)

by
Fn(z) = Πn

j=1fzj (z)e
−i aj

we have the convergence

lim
n→∞

Fn(z) = F (z) = Π∞
j=1fzj (z)e

−i aj

uniformly on compact subsets of D as n → ∞. It follows from |Fn(z)| ≤ 1
on D that |F (z)| ≤ 1 on D. The functions vn(z) =

u(z)
Fn(z)

are analytic in D

(as the only zeros of Fn are zeros of u) and are seen easily to converge to
the limit v = u

F
so that u = Fv. Moreover Fn(z) are continuous near S and

|Fn(z)| ≡ 1 on S. Therefore,

sup
0<r<1

1

2π

∫ 2π

0

|vn(rei θ)|pdθ = lim sup
r→1

1

2π

∫ 2π

0

|vn(rei θ)|pdθ

= lim sup
r→1

1

2π

∫ 2π

0

|u(rei θ)|p

|Fn(rei θ)|p
dθ

= lim sup
r→1

1

2π

∫ 2π

0

|u(rei θ)|pdθ

= sup
0<r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ

Since vn(z) → v(z) uniformly on compact subsets of D, by Fatou’s lemma,

sup
0<r<1

1

2π

∫ 2π

0

|v(rei θ)|pdθ ≤ sup
0<r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ (5.4)
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In other words we have succeeded in writing u = Fv with |F (z)| ≤ 1, re-
moving all the zeros of u, but v still satsfying (5.4). In order to complete
the proof of the theorem it only remains to prove that |F (z)| = 1 a.e. on S.
From (5.4) and the relation u = vF , it is not hard to see that

lim
r→1

1

2π

∫ 2π

0

|v(rei θ)|p(1− |F (rei θ)|p)dθ = 0

Since F (rei θ) is known to have a boundary limit F ∗ to show that |F ∗| = 1
a.e. all we need is to get a control on the Lebesgue measure of the set
{θ : |v(rei θ)| ≤ δ}. It is clearly sufficient to get a bound on

sup
0<r<1

1

2π

∫ 2π

0

| log |v(rei θ)||dθ

Since log+ v can be dominated by |v|p with any p > 0, it is enough to get a
lower bound on 1

2π

∫ 2π
0 log |v(rei θ)|dθ that is uniform as r → 1. Clearly

1

2π

∫ 2π

0

log |v(rei θ)|dθ ≥ log |u(0)|

is sufficient.

Theorem 5.4. Suppose u ∈ Hp for some p > 0. Then limr→1 u(rei θ) =
u∗(eiθ) exists in the following sense

lim
r→1

∫ 2π

0

|u(rei θ)− u∗(ei θ)|pdθ = 0

Moreover, if p ≥ 1, u has the Poisson kernel representation in terms of u∗.

Proof. If u ∈ Hp, according to Theorem 5.3, we can write u = vF with
v ∈ Hp which is zero free and |F | ≤ 1. Choose an integer k such that kp > 1.
Since v is zero free v = wk for some w ∈ Hkp. Now w(rei θ) has a limit w∗ in
Lkp(S). Since |F | ≤ 1 and has a radial limit F ∗ it is clear the u has a limit
u∗ ∈ Lp(S) given by u∗ = (w∗)kF ∗. If 0 < p ≤ 1 to show convergence in
the sense claimed above, we only have to prove the uniform integrability of
|u(rei θ)|p = |w(rei θ)|kp which follows from the convergence of w in Lkp(S).
If p ≥ 1 it is easy to obtain the Poisson representation on S by taking the
limit as r → 1 from the representation on |z| = r which is always valid.
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We can actually prove a better version of Theorem 5.3. Let u ∈ Hp for
some p > 0, be arbitrary but not identically zero. We can start with the
inequality

−∞ < log |u(r0ei θ0)| ≤
r2 − r20
2π

∫ 2π

0

log |u(rei (θ0−ϕ))|
r2 − 2rr0 cosϕ+ r20

dϕ (5.5)

where z0 = r0ei θ0 is such that r0 = |z0| < 1 and |u(z0)| > 0. We can use the
uniform integrability of log+ |u(rei θ)| as r → 1, and conclude from Fatou’s
lemma that ∫ 2π

0

| log |u(ei (θ0−ϕ))||
1− 2r0 cosϕ+ r20

dϕ < ∞

Since the Poisson kernel is bounded above as well as below (away from zero)
we conclude that the boundary function u(ei θ) satisfies

∫ 2π

0

| log |u(ei θ)||dθ < ∞

We define f(rei θ) by the Poisson integral

f(rei θ) =
1− r2

4π

∫ 2π

0

log |u(ei (θ−ϕ))|
1− 2r cosϕ+ r2

dϕ

to be Harmonic with boundary value log |u(ei θ)|. From the inequality (5.5) it
follows that f(rei θ) ≥ log |u(rei θ)|. We can then take the conjugate harmonic
function g so that w(·) given by w(rei θ) = f(rei θ) + ig(rei θ) is analytic. We
define v(z) = ew(z) so that log |v| = f . We can write u = Fv that produces a
factorization of u with a zero free v and F with |F (z)| ≤ 1 on D. Since the
boundaru values of log |u| and log |v| match on S, the boundary values of F
which exist must satisfy |F | = 1 a.e. on S. We have therefore proved

Theorem 5.5. Any u in Hp, with p > 0, can be factored as u = Fv with the
following properties: |F | ≤ 1 on D, |F | = 1 on S, v is zero free in D and
log |v|, which is harmonic in D, is given by the Poisson formula in terms
of its boundary value log |v(ei θ)| = log |u(ei θ)| which is in L1(S). Such a
factorization is essentially unique, the only ambiguity being a mutiplicatve
constant of absolute value 1.

Remark. The improvement over Theorem 5.3 is that we have made sure
that log |v| is not only Harmonic in D but actually takes on its boundary
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value in the sense of L1(S). This provides the uniqueness that was missing
before. As an example consider the Poisson kernel itself.

u(z) = e
z+1

z−1

|u(z)| < 1 on D, u(rei θ) → ei cot
θ
2 as r → 1. Such a factor is without zeros

and would be left alone in Theorem 5.3, but removed now.

There are characterizations of the factor u that occurs in u = vF .

Theorem 5.6. Let u ∈ H2 be arbitrary and nontrivial. Then 1 belongs to
the span of {znu : n ≥ 0} if and only if

log |u(0)| = 1

2π

∫ 2π

0

log |u(ei θ)| dθ (5.6)

Proof. Let some linear span of {znu : n ≥ 0} converge to 1. In other words
∥pn(z)u(z)− 1∥H2

→ 0 for some polynomials pn(·). Then

log |pn(0)| ≤
1

2π

∫ 2π

0

log |pn(ei θ)| dθ

and log |pn(ei θ)u(ei θ)| → 0 as n → ∞ in measure on S and
log+ |pn(ei θ)u(ei θ)| is uniformly integrable. Therefore by Fatou’s lemma

0 ≥ lim sup
n→∞

1

2π

∫ 2π

0

log |pn(ei θ)u(ei θ)| dθ

It follows that

0 ≥ lim sup
n→∞

1

2π

∫ 2π

0

log |pn(ei θ)| dθ +
1

2π

∫ 2π

0

log |u(ei θ)| dθ

≥ lim sup
n→∞

log |pn(0)|+
1

2π

∫ 2π

0

log |u(ei θ)| dθ

= − log |u(0)|+ 1

2π

∫ 2π

0

log |u(ei θ)| dθ

which implies that

log |u(0)| ≥ 1

2π

∫ 2π

0

log |u(ei θ)| dθ
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The reverse inequality is always valid and so we are done with one half.

To prove the converse we first establish two lemmas. Let us suppose that
u ∈ H2 is not identically zero and let K be the span of uH as H varies over
H∞.

Lemma 5.7. Pick a such that |u(a)| > 0 and take ka ∈ K to be the orthogonal
projection in K of fa(z) = 1

1−āz
. Than |ka(ei,θ)|2 = c(a)Pa(ei θ) where P is

the Poisson kernel and c(a) > 0 is a positive constant

Proof. Note that by Cauchy’s formula for any v ∈ H2,

1

2π

∫ 2π

0

fa(ei θ)v(e
i θ)dθ =

1

2π

∫ 2π

0

1

1− ae−i θ
v(ei θ)dθ

=
1

2πi

∫ 2π

0

1

ei θ − a
v(ei θ)dei θ

=
1

2πi

∫

C

v(z)

z − a
dz

= v(a) (5.7)

Note that (fa − ka) ⊥ K. Writing the orthogonality relations in terms of the
boundary values, and noting that znka ∈ K for n ≥ 0,

∫ 2π

0

[fa(ei θ)− ka(ei θ)]e
i nθka(e

i θ)dθ =< fa − ka, z
nka >= 0 (5.8)

On the other hand for n ≥ 0, since znka ∈ H2, by (5.7)

∫ 2π

0

fa(ei θ)e
i nθka(e

i θ)dθ = 2πanka(a)

Combining with equation (5.8) we get for n ≥ 0,

∫ 2π

0

ei nθ|ka(ei θ)|2dθ = 2πka(a)a
n

But |ka|2 is real and therefore ka(a) must be real and

∫ 2π

0

ei nθ|ka(ei θ)|2dθ =

⎧
⎪⎨

⎪⎩

2πka(a)an if n > 0

2πka(a) if n = 0

2πka(a)ān if n < 0
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This implies that |ka(ei θ)|2 ≡ c(a)Pa(ei θ) on S where Pa is the Poisson kernel.
If c(a) = 0, it follows that ka ≡ 0 and hence fa ⊥ K. Since u ∈ K, this implies
by (5.7) that

< fa, u >= 2πu(a) = 0

which is ruled out by the choice of a.

Lemma 5.8. The span of {kaH} as H varies over H∞ is all of K.

Proof. If not, let v ∈ K be such that v ⊥ kaH for all H ∈ H∞. We have
then, for n ≥ 0, taking H = zn,

∫ 2π

0

ka(ei θ)e
−i nθv(ei θ)dθ =< kaz

n, v >= 0

For n = −m < 0, zmv ∈ K and
∫ 2π

0

ka(ei θ)e
−i nθv(ei θ)dθ =< ka, z

mv >=< fa, z
mv >= 2πamv(a)

Now Fourier inversion gives

ka(ei θ)v(e
i θ) = v(a)

∞∑

m=1

ame−im θ = v(a)
ae−i θ

1− ae−i θ

= c1(a)
1

ei θ − a
= c2(a)Pa(e

i θ)(e−i θ − ā)

Multiplying by ka and remembering that |ka|2 = c(a)Pa with c(a) > 0, we
obtain c(a)v(ei θ) = c2(a)ka(eiθ)(e−i θ − ā). This leads to

v(ei θ) = c4(a)
ka(ei θ)

e−i θ − ā
= c4(a)

ka(ei θ)ei θ

1− āei θ

Therefore v = kaH with H(z) = z
1−āz

∈ H∞ contradicting v ⊥ Hka for all
H ∈ H∞ and forcing v to be 0.

We are now ready to prove the converse. If the span of {znu : n ≥ 0} is
K ⊂ H2 is a proper subspace, there is an a, fa and ka such that u = kav for
some v ∈ H∞ and |k|2(ei θ) = c(a)Pa(ei θ), the Poisson kernel for a ∈ D. For
the Poisson kernel it is easy to verify that

log |Pa(0)| <
1

2π

∫ 2π

0

log |Pa(e
i θ)| dθ

for any a ∈ D. Therefore we cannot have (5.6) satisfied.
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5.4 Connection to prediction theory.

Suppose f(eiθ) ≥ 0 is a weight that is in L1(S). We consider the Hilbert
Space H = L2(S, f) of functions u that are square integrable with respect to
the weight f , i.e. g such that

∫ 2π
0 |g(eiθ)|2f(eiθ)dθ < ∞. The trigonometric

functions {einθ : −∞ < n < ∞} are still a basis for H , though they may not
be mutually orthogonal. We define Hk = span{ei n θ : n ≥ k}. It is clear the
Hk ⊃ Hk+1 and mutiplication by e±iθ is a unitary map U±1 of H onto itself
that sends Hk onto Hk±1. We are interested in calculating the orthogonal
projection e1(ei θ) of 1 into H1 along with the residual error ∥1 − e1(ei θ)∥22.
There are two possibilities. Either 1 ∈ H1 in which case H0 = H1 and hence
Hk = H for all k, or H0 is spanned by H1 and a unit vector u0 ∈ H0 that is
orthogonal to H1. If we define uk = Uku0, then H = ⊕∞

j=−∞uj ⊕H∞ where
H∞ = ∩kHk. In a nice situation we expect that H−∞ = {0}. However if
ei θ ∈ H0 as we saw H∞ = H . If f(ei θ) ≡ c then of course uk = ei k θ.

Theorem 5.9. Let us suppose that

∫ 2π

0

log f(ei θ)dθ > −∞ (5.9)

Then H∞ = {0} and the residual error is given by

∥1− e1(e
i θ)∥22 = inf

{aj}
∥1−

∑

j≥1

aje
i j θ∥22

= 2π exp[
1

2π

∫ 2π

0

log f(ei θ)dθ] > 0 (5.10)

Proof. We will split the proof into several steps. The prediction problem
involves

inf
{aj}

∥1−
∑

j≤−1

aje
i j θ∥22

We seems to be predicting the past given the future. But the calculations
are the same.

∥e0(ei θ)− e−i θ∥22 = inf
{aj}

∥e−i θ −
∑

j≥0

aje
i j θ∥22

= 2π exp[
1

2π

∫ 2π

0

log f(ei θ)dθ] > 0 (5.11)
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Step 1. We write f(ei θ) = |u(ei θ)|2, where u is the boundary value of a
function u(rei θ) in H2. Note that, if this were possible, then according to
Theorem 5.3 one can assume with out loss of generality that u(0) ≠ 0 and
for 0 < r < 1

−∞ < log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ

We can let r → 1, use the domination of log+ |u| by |u| and Fatou’s lemma
on log− |u|. We get

−∞ < log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ = 1

4π

∫ 2π

0

log |f(rei θ)|dθ

We see that the condition (5.9) is necessary for the representation that we
seek. We begin with the function 1

2 log f ∈ L1(S) and construct F (rei θ)
given by the Poisson formula

F (rei θ) =
1− r2

4π

∫ 2π

0

log f(ei (θ−ϕ))

1− 2r cosϕ+ r2
dϕ

to be Harmonic with boundary value 1
2 log f . We then take the conjugate

harmonic function G so that w(·) given by w(rei θ) = F (rei θ) + iG(rei θ) is
analytic. We define u(z) = ew(z).

∫ 2π

0

|u(rei θ)|2dθ =
∫ 2π

0

exp[2F (rei θ)]dθ

≤
∫ 2π

0

1− r2

2π

∫ 2π

0

f(ei (θ−ϕ))

1− 2r cosϕ+ r2
dϕdθ

=

∫ 2π

0

f(ei θ)dθ

Therefore u ∈ H2 and limr→1 u(rei θ) = u(ei θ) exists in L2(S). Clearly

|u(ei θ)| = exp[lim
r→1

F (rei θ)] =
√

f(ei θ)

and f = |u|2 on S. It is easily seen that u(z) =
∑

n≥0 anz
n with

∑

n≥0

|an|2 =
1

2π

∫ 2π

0

f(ei θ)dθ



62 CHAPTER 5. HARDY SPACES.

Step 2. Our representation has the additional property that u(z) is zero free
in D and satifies (5.6). Suppose h(rei θ) is any function in H2 with boundary
value h(ei θ) with |h| =

√
f that also satsifies

log |h(0)| = 1

2π

∫ 2π

0

1

2
log fdθ

then

log |h(0)| ≤ 1

2π

∫ 2π

0

log |h(rei θ)|dθ

By Fatou’s lemma applied to log− |h| as r → 1 we get

lim sup
r→1

1

2π

∫ 2π

0

log |h(rei θ)|dθ ≤ 1

2π

∫ 2π

0

1

2
log f(ei θ)dθ

Therefore equality holds in Fatou’s lemma implying the uniform integrabilty
as well as the convergence in L1(S) of log |h(rei θ)| to 1

2 log f(e
i θ) as r → 1.

In particular for 0 < r < 1,

log |h(0)| = 1

2π

∫ 2π

0

log |h(rei θ)|dθ

and hence h is zero free in D. Consequently, for 0 ≤ r < r′ < 1

log |h(rei θ)| = r′2 − r2

2π

∫ 2π

0

log |h(rei (θ−ϕ))|
r′2 − 2r′r cos dϕ+ r2

dϕ

We can let r′ → 1 use the convergence of log |h(rei θ)| to 1
2 log f in L1(S) to

conclude

log |h(rei θ)| = 1− r2

4π

∫ 2π

0

log f(ei (θ−ϕ))

1− 2r cos dϕ+ r2
dϕ

Therfore the representation of f(ei θ) = |u(ei θ)|2, with u(ei θ) the boundary
value of u ∈ H2 that satisfies condition (5.6) is unique to within a multiplica-
tive constant of absolute value 1. The significance of making the choice of
u so that the condition (5.6) is valid, is that we can conclude that {zju(z)}
spans all of H2.


